skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Schultz, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schultz, Christian (Ed.)
    Laser-powder bed fusion additive manufacturing (LPBF-AM) of metals is rapidly becoming one of the most important materials processing pathways for next-generation metallic parts and components in a number of important applications. However, the large parametric space that characterizes laser-based LPBF-AM makes it challenging to understand what are the variables controlling the microstructural and mechanical property outcomes. Sensitivity studies based on direct LPBF-AM processing are costly and lengthy to conduct, and are subjected to the specifications and variability of each printer. Here we develop a fast-throughput numerical approach that simulates the LPBF-AM process using a cellular automaton model of dynamic solidification and grain growth. This is accompanied by a polycrystal plasticity model that captures grain boundary strengthening due to complex grain geometry and furnishes the stress-strain curves of the resulting microstructures. Our approach connects the processing stage with the mechanical testing stage, thus capturing the effect of processing variables such as the laser power, laser spot size, scan speed, and hatch width on the yield strength and tangent moduli of the processed materials. When applied to pure Cu and stainless 316L steel, we find that laser power and scan speed have the strongest influence on grain size in each material, respectively. 
    more » « less